Lecture 9. Effective population size. Diffusion approximation.

3.3 Effective population size

for a randomly mating population different from WFM EPS N_e is the size of WFM with the same RGD rate

$$1 - F_t = (1 - \frac{1}{2N_c})^t$$

Actual size $N \neq N_e$ (usually $N_e < N$) due to various deviations from WFM assumptions

Ex 1: D. melanogaster experiment

Fig 7.12, p. 288:
$$N=16$$
 and $N_e=9$
average heterozygosity $\bar{H}_t \approx 0.5(1-\frac{1}{18})^t$

Exchangeable reproduction law
$$N_e = \frac{N}{\text{Var}(\nu)}$$

Variable population size

Assuming large historical population sizes $N_1, N_2, ..., N_t$

$$1 - F_t = \left(1 - \frac{1}{2N_1}\right)\left(1 - \frac{1}{2N_2}\right) \dots \left(1 - \frac{1}{2N_t}\right)$$

$$\approx 1 - \frac{1}{2N_1} - \frac{1}{2N_2} - \dots - \frac{1}{2N_t}$$

$$1 - F_t = \left(1 - \frac{1}{2N_e}\right)^t \approx 1 - \frac{t}{2N_e}$$

Harmonic mean formula
$$\frac{1}{N_e} = \frac{1}{t} (\frac{1}{N_1} + \frac{1}{N_2} + \dots + \frac{1}{N_t})$$

Bottleneck effect

$$N_1 = ... = N_5 = 1000$$

 $N_6 = N_7 = 100, N_8 = ... = N_{12} = 1000$
Compare $N_e = 400, \bar{N} = 850$, and current $N = 1000$

Ex 3: northern elephant seals

hunted down to N=20 in 1890's now N=30,000 and no genetic variation in 24 genes Southern elephant seals

to the contrary have wide genetic variation

Founder effect

Small number of founders and exponential growth:

$$N_1 = 10, N_2 = 20, N_3 = 40, N_4 = 80, \dots, N_{10} = 5120$$
 compare $N_e = 50, \bar{N} = 1023$, and current $N = 5120$

Uniform population dispersion

Density parameter δ = the number of breeding individuals per hectare (= 10⁴ m²) Mobility parameter σ measured in 100 m offspring birthplaces are IID with N($\mu_1, \mu_2, \sigma^2, \sigma^2, 0$) parent's birthplace (μ_1, μ_2) measured in 100 m

Neighborhood size:
$$N_e = 4\pi\delta\sigma^2$$

Non-random mating: $1 - F_t = (1 - \frac{1}{2N_e})^t$, where $F_t = \text{probab.}$ for two gene copies in an individual at generation t to descend from the same ancestral gene copy at generation 0

3.4 Diffusion approximation

Diffusion approximation $\xi_t = p_{[2Nt]}$ allele frequency with time running faster by factor 2Nin WFM with add. selection and reversible mutation

1 generation corresponds to $\Delta t = \frac{1}{2N}$ of diffusion time

Conditional expectation and variance

$$E(\Delta \xi_t | \xi_t = p) = M(p)\Delta t$$
 $M(p) = -ap + bq + cpq$
 $Var(\Delta \xi_t | \xi_t = p) = V(p)\Delta t$ $V(p) = pq$

Infinitesimal mutation rates $a = 2N\mu$, $b = 2N\nu$ and selection coefficient c = 2Ns

Backward and Forward Kolmogorov Equations for conditional pdf $\phi(p, x, t)$ of $\xi_t = x$ given $\xi_0 = p$

BKE: first generation change $\phi_t' = M(p)\phi_p' + \frac{1}{2}V(p)\phi_p''$ FKE: last gen. change $\phi_t' = -[M(x)\phi]_x' + \frac{1}{2}[V(x)\phi]_x''$

Allele fixation

T= time to fixation of allele A at frequency p $u(p)=\mathrm{P}(T<\infty|\xi_0=p)$ probability of fixation $T=\infty$ means that allele A is never fixed i.e. lost u(p) satisfies stationary BKE with u(0)=0, u(1)=1 Stationary BKE $M(p)u'+\frac{1}{2}V(p)u''=0$

WFM with selection and without mutation solution of the stationary BKE $u(p) = \frac{1-e^{-2cp}}{1-e^{-2c}}$ in particular, if no selection u(p) = p

Fixation of a new mutation

New mutation $p = \frac{1}{2N}$ fixation prob. $u(\frac{1}{2N}) = \frac{1 - e^{-2s}}{1 - e^{-4sN}}$

$$u(\frac{1}{2N}) \approx \frac{2s}{1-e^{-4sN}}$$
 if $|s| \ll 1$

Neutral selection: if $|s| \ll \frac{1}{4N}$, then $u(\frac{1}{2N}) = \frac{1}{2N}$ mean time to fixation $\mathrm{E}(T|T < \infty) \approx 4N$ average time to loss $\approx 2\ln(2N)$

Positive selection

if
$$\frac{1}{4N}\ll s\ll 1$$
, then $u(\frac{1}{2N})\approx 2s$ mean time to fixation $\mathrm{E}(T|T<\infty)\approx \frac{2}{s}\ln 2N$

Negative selection

if
$$\frac{1}{4N} \ll -s \ll 1$$
, then $u(\frac{1}{2N}) \approx -2s \cdot e^{4sN}$

Ex 8: numerical example

population size $N = 10^6$

If s = 0.05, then

 $u(\frac{1}{2N}) = 0.1$ or 90% probability of loss mean time to fixation 580 generations

If s = -0.01, then

$$u(\frac{1}{2N}) = 0.02 \cdot e^{-40000} = 0$$
 fixation is impossible

If neutral mutation, then

$$u(\frac{1}{2N}) = 0.5 \cdot 10^{-6}$$

mean time to fixation ≈ 4000000 generations average time to loss ≈ 29 generations

Stable distribution of the allele frequency

Under unchanged circumstances distribution $\phi(p, x, t)$ becomes a stationary distribution: $\phi(p, x, \infty) \equiv f(x)$ independent of t and p, so that initial state is forgotten

Stationary FKE:
$$[M(x)f(x)]' = \frac{1}{2}[V(x)f(x)]''$$

WFM with reversible mutation, no selection: Beta
$$(2b, 2a)$$
 pdf $f(x) = \frac{\Gamma(2a)\Gamma(2b)}{\Gamma(2a+2b)}x^{2b-1}(1-x)^{2a-1}$

Mean value and variance of Beta(2b, 2a) distribution mean $\hat{p} = \frac{2b}{2a+2b} = \frac{\nu}{\nu+\mu}$ equilibrium frequency variance $= \frac{ab}{(a+b)^2(2a+2b+1)}$ strength of RGD

Literature:

- 1. D.L.Hartl, A.G.Clarc. Principle of population genetics. Sinauer Associates, 2007.
- 2. R.Nielson, M. Statkin. An introduction to population genetics: theory and applications, Sinauer Associates. 2013.